КОМБИНАТОРИКА

   
 
  ФАКТОРИАЛ ЧИСЛА

ФАКТОРИАЛ ЧИСЛА

Факториал числа — это произведение всех натуральных чисел до этого числа включительно.

Обозначается с восклицательным знаком в конце.

n! = 1 · 2 · 3 · 4 · … · (n-2) · (n-1) · n

Случай 0! определен и имеет значение 0!=1, соответствующее комбинаторной интерпретации комбинации нуля объектов, другими словами, есть единственная комбинация нуля элементов, а именно: пустое множество.

Ниже приведены значения факториалов от 0 до 10.

0! = 1
1! = 1
2! = 1 · 2 = 2
3! = 1 · 2 · 3 = 6
4! = 1 · 2 · 3 · 4 = 24
5! = 1 · 2 · 3 · 4 · 5 = 120
6! = 1 · 2 · 3 · 4 · 5 · 6 = 720
7! = 1 · 2 · 3 · 4 · 5 · 6 · 7 = 5040
8! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 = 40320
9! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 = 362880
10! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 = 3628800

Свойство факториала:
(n + 1)! = (n + 1) · n!

Например:
(5 + 1)! = (5 + 1) · 5!
Действительно
6! = (1 · 2 · 3 · 4 · 5) · 6 = 720
А значение (1 · 2 · 3 · 4 · 5) = 5! = 120
Реклама
 
 

=> Тебе нужна собственная страница в интернете? Тогда нажимай сюда! <=